Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.498
Filtrar
1.
Nature ; 625(7996): 788-796, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38029793

RESUMO

The expansion of the neocortex, a hallmark of mammalian evolution1,2, was accompanied by an increase in cerebellar neuron numbers3. However, little is known about the evolution of the cellular programmes underlying the development of the cerebellum in mammals. In this study we generated single-nucleus RNA-sequencing data for around 400,000 cells to trace the development of the cerebellum from early neurogenesis to adulthood in human, mouse and the marsupial opossum. We established a consensus classification of the cellular diversity in the developing mammalian cerebellum and validated it by spatial mapping in the fetal human cerebellum. Our cross-species analyses revealed largely conserved developmental dynamics of cell-type generation, except for Purkinje cells, for which we observed an expansion of early-born subtypes in the human lineage. Global transcriptome profiles, conserved cell-state markers and gene-expression trajectories across neuronal differentiation show that cerebellar cell-type-defining programmes have been overall preserved for at least 160 million years. However, we also identified many orthologous genes that gained or lost expression in cerebellar neural cell types in one of the species or evolved new expression trajectories during neuronal differentiation, indicating widespread gene repurposing at the cell-type level. In sum, our study unveils shared and lineage-specific gene-expression programmes governing the development of cerebellar cells and expands our understanding of mammalian brain evolution.


Assuntos
Cerebelo , Evolução Molecular , Mamíferos , Neurogênese , Animais , Humanos , Camundongos , Linhagem da Célula/genética , Cerebelo/citologia , Cerebelo/embriologia , Cerebelo/crescimento & desenvolvimento , Feto/citologia , Feto/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Neurogênese/genética , Neurônios/citologia , Neurônios/metabolismo , Gambás/embriologia , Gambás/crescimento & desenvolvimento , Células de Purkinje/citologia , Células de Purkinje/metabolismo , Análise da Expressão Gênica de Célula Única , Especificidade da Espécie , Transcriptoma , Mamíferos/embriologia , Mamíferos/crescimento & desenvolvimento
2.
FEBS J ; 290(11): 2786-2804, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-35262281

RESUMO

The study of cerebellar development has been at the forefront of neuroscience since the pioneering work of Wilhelm His Sr., Santiago Ramón y Cajal and many others since the 19th century. They laid the foundation to identify the circuitry of the cerebellum, already revealing its stereotypic three-layered cortex and discerning several of its neuronal components. Their work was fundamental in the acceptance of the neuron doctrine, which acknowledges the key role of individual neurons in forming the basic units of the nervous system. Increasing evidence shows that the cerebellum performs a variety of homeostatic and higher order neuronal functions beyond the mere control of motor behaviour. Over the last three decades, many studies have revealed the molecular machinery that regulates distinct aspects of cerebellar development, from the establishment of a cerebellar anlage in the posterior brain to the identification of cerebellar neuron diversity at the single cell level. In this review, we focus on summarizing our current knowledge on early cerebellar development with a particular emphasis on the molecular determinants that secure neuron specification and contribute to the diversity of cerebellar neurons.


Assuntos
Cerebelo , Neurônios , Animais , Humanos , Cerebelo/anatomia & histologia , Cerebelo/citologia , Cerebelo/embriologia , Biologia do Desenvolvimento , Neurônios GABAérgicos/citologia , Homeostase , Neurônios/classificação , Neurônios/citologia , Neurônios/metabolismo , Neurociências , Análise de Célula Única
3.
Nature ; 609(7929): 1012-1020, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36131015

RESUMO

Medulloblastoma, a malignant childhood cerebellar tumour, segregates molecularly into biologically distinct subgroups, suggesting that a personalized approach to therapy would be beneficial1. Mouse modelling and cross-species genomics have provided increasing evidence of discrete, subgroup-specific developmental origins2. However, the anatomical and cellular complexity of developing human tissues3-particularly within the rhombic lip germinal zone, which produces all glutamatergic neuronal lineages before internalization into the cerebellar nodulus-makes it difficult to validate previous inferences that were derived from studies in mice. Here we use multi-omics to resolve the origins of medulloblastoma subgroups in the developing human cerebellum. Molecular signatures encoded within a human rhombic-lip-derived lineage trajectory aligned with photoreceptor and unipolar brush cell expression profiles that are maintained in group 3 and group 4 medulloblastoma, suggesting a convergent basis. A systematic diagnostic-imaging review of a prospective institutional cohort localized the putative anatomical origins of group 3 and group 4 tumours to the nodulus. Our results connect the molecular and phenotypic features of clinically challenging medulloblastoma subgroups to their unified beginnings in the rhombic lip in the early stages of human development.


Assuntos
Linhagem da Célula , Neoplasias Cerebelares , Meduloblastoma , Metencéfalo , Animais , Neoplasias Cerebelares/classificação , Neoplasias Cerebelares/embriologia , Neoplasias Cerebelares/patologia , Cerebelo/embriologia , Humanos , Meduloblastoma/classificação , Meduloblastoma/embriologia , Meduloblastoma/patologia , Metencéfalo/embriologia , Camundongos , Neurônios/patologia , Estudos Prospectivos
4.
Nature ; 609(7929): 1021-1028, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36131014

RESUMO

Medulloblastoma (MB) comprises a group of heterogeneous paediatric embryonal neoplasms of the hindbrain with strong links to early development of the hindbrain1-4. Mutations that activate Sonic hedgehog signalling lead to Sonic hedgehog MB in the upper rhombic lip (RL) granule cell lineage5-8. By contrast, mutations that activate WNT signalling lead to WNT MB in the lower RL9,10. However, little is known about the more commonly occurring group 4 (G4) MB, which is thought to arise in the unipolar brush cell lineage3,4. Here we demonstrate that somatic mutations that cause G4 MB converge on the core binding factor alpha (CBFA) complex and mutually exclusive alterations that affect CBFA2T2, CBFA2T3, PRDM6, UTX and OTX2. CBFA2T2 is expressed early in the progenitor cells of the cerebellar RL subventricular zone in Homo sapiens, and G4 MB transcriptionally resembles these progenitors but are stalled in developmental time. Knockdown of OTX2 in model systems relieves this differentiation blockade, which allows MB cells to spontaneously proceed along normal developmental differentiation trajectories. The specific nature of the split human RL, which is destined to generate most of the neurons in the human brain, and its high level of susceptible EOMES+KI67+ unipolar brush cell progenitor cells probably predisposes our species to the development of G4 MB.


Assuntos
Diferenciação Celular , Neoplasias Cerebelares , Meduloblastoma , Metencéfalo , Diferenciação Celular/genética , Linhagem da Célula , Neoplasias Cerebelares/classificação , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/patologia , Cerebelo/embriologia , Cerebelo/patologia , Subunidades alfa de Fatores de Ligação ao Core/genética , Proteínas Hedgehog/metabolismo , Histona Desmetilases , Humanos , Antígeno Ki-67/metabolismo , Meduloblastoma/classificação , Meduloblastoma/genética , Meduloblastoma/patologia , Metencéfalo/embriologia , Metencéfalo/patologia , Proteínas Musculares , Mutação , Fatores de Transcrição Otx/deficiência , Fatores de Transcrição Otx/genética , Proteínas Repressoras , Proteínas com Domínio T/metabolismo , Fatores de Transcrição
5.
Science ; 373(6558)2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34446581

RESUMO

Organ development is orchestrated by cell- and time-specific gene regulatory networks. In this study, we investigated the regulatory basis of mouse cerebellum development from early neurogenesis to adulthood. By acquiring snATAC-seq (single-nucleus assay for transposase accessible chromatin using sequencing) profiles for ~90,000 cells spanning 11 stages, we mapped cerebellar cell types and identified candidate cis-regulatory elements (CREs). We detected extensive spatiotemporal heterogeneity among progenitor cells and a gradual divergence in the regulatory programs of cerebellar neurons during differentiation. Comparisons to vertebrate genomes and snATAC-seq profiles for ∼20,000 cerebellar cells from the marsupial opossum revealed a shared decrease in CRE conservation during development and differentiation as well as differences in constraint between cell types. Our work delineates the developmental and evolutionary dynamics of gene regulation in cerebellar cells and provides insights into mammalian organ development.


Assuntos
Evolução Biológica , Cerebelo/citologia , Cerebelo/crescimento & desenvolvimento , Neurônios/fisiologia , Elementos Reguladores de Transcrição , Animais , Cerebelo/embriologia , Cromatina/genética , Cromatina/metabolismo , DNA Intergênico , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Masculino , Camundongos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/fisiologia , Neurogênese , Gambás/genética
6.
Acta Neuropathol ; 142(4): 761-776, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34347142

RESUMO

Dandy-Walker malformation (DWM) and Cerebellar vermis hypoplasia (CVH) are commonly recognized human cerebellar malformations diagnosed following ultrasound and antenatal or postnatal MRI. Specific radiological criteria are used to distinguish them, yet little is known about their differential developmental disease mechanisms. We acquired prenatal cases diagnosed as DWM and CVH and studied cerebellar morphobiometry followed by histological and immunohistochemical analyses. This was supplemented by laser capture microdissection and RNA-sequencing of the cerebellar rhombic lip, a transient progenitor zone, to assess the altered transcriptome of DWM vs control samples. Our radiological findings confirm that the cases studied fall within the accepted biometric range of DWM. Our histopathological analysis points to reduced foliation and inferior vermian hypoplasia as common features in all examined DWM cases. We also find that the rhombic lip, a dorsal stem cell zone that drives the growth and maintenance of the posterior vermis is specifically disrupted in DWM, with reduced proliferation and self-renewal of the progenitor pool, and altered vasculature, all confirmed by transcriptomics analysis. We propose a unified model for the developmental pathogenesis of DWM. We hypothesize that rhombic lip development is disrupted through either aberrant vascularization and/or direct insult which causes reduced proliferation and failed expansion of the rhombic lip progenitor pool leading to disproportionate hypoplasia and dysplasia of the inferior vermis. Timing of insult to the developing rhombic lip (before or after 14 PCW) dictates the extent of hypoplasia and distinguishes DWM from CVH.


Assuntos
Cerebelo/anormalidades , Síndrome de Dandy-Walker/embriologia , Síndrome de Dandy-Walker/patologia , Desenvolvimento Fetal/fisiologia , Feto/patologia , Malformações do Sistema Nervoso/embriologia , Malformações do Sistema Nervoso/patologia , Estudos de Casos e Controles , Cerebelo/embriologia , Cerebelo/patologia , Deficiências do Desenvolvimento/patologia , Humanos , Recém-Nascido
7.
Nat Neurosci ; 24(8): 1163-1175, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34140698

RESUMO

The human neonatal cerebellum is one-fourth of its adult size yet contains the blueprint required to integrate environmental cues with developing motor, cognitive and emotional skills into adulthood. Although mature cerebellar neuroanatomy is well studied, understanding of its developmental origins is limited. In this study, we systematically mapped the molecular, cellular and spatial composition of human fetal cerebellum by combining laser capture microscopy and SPLiT-seq single-nucleus transcriptomics. We profiled functionally distinct regions and gene expression dynamics within cell types and across development. The resulting cell atlas demonstrates that the molecular organization of the cerebellar anlage recapitulates cytoarchitecturally distinct regions and developmentally transient cell types that are distinct from the mouse cerebellum. By mapping genes dominant for pediatric and adult neurological disorders onto our dataset, we identify relevant cell types underlying disease mechanisms. These data provide a resource for probing the cellular basis of human cerebellar development and disease.


Assuntos
Cerebelo/embriologia , Neurogênese , Feto , Humanos , Microdissecção e Captura a Laser , Análise de Célula Única , Transcriptoma
8.
Ultrasound Obstet Gynecol ; 58(6): 864-874, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33942916

RESUMO

OBJECTIVES: To describe the prenatal neuroimaging spectrum of rhombencephalosynapsis (RES) and criteria for its classification according to the severity of vermian anomaly. METHODS: In this multicenter retrospective study of fetuses with RES between 2002 and 2020, the medical records and brain ultrasound and magnetic resonance images were evaluated comprehensively to determine the severity of the vermian anomaly and the presence of associated brain findings. RES was classified, according to the pattern of vermian agenesis and the extent of the fusion of the hemispheres, as complete RES (complete absence of the vermis) or partial RES (further classified according to the part of the vermis that was missing and, consequently, the region of hemispheric fusion, as anterior, posterior, severe or mixed RES). Findings were compared between cases with complete and those with partial RES. RESULTS: Included in the study were 62 fetuses with a gestational age ranging between 12 and 37 weeks. Most had complete absence of the vermis (complete RES, 77.4% of cases), a 'round-shaped' cerebellum on axial views (72.6%) and a transverse cerebellar diameter (TCD) < 3rd centile (87.1%). Among the 22.6% of cases with partial RES, 6.5% were classified as severe partial, 6.5% as partial anterior, 8.1% as partial mixed and 1.6% as partial posterior. Half of these cases presented with normal or nearly normal cerebellar morphology and 28.5% had a TCD within the normal limits. Infratentorially, the fourth ventricle was abnormal in 88.7% of cases overall, and anomalies of the midbrain and pons were frequent (93.5% and 77.4%, respectively). Ventriculomegaly was observed in 80.6% of all cases, being more severe in cases with complete RES than in those with partial RES, with high rates of parenchymal and septal disruption. CONCLUSIONS: This study provides prenatal neuroimaging criteria for the diagnosis and classification of RES, and identification of related features, using ultrasound and magnetic resonance imaging. According to our findings, a diagnosis of RES should be considered in fetuses with a small TCD (severe cerebellar hypoplasia) and/or a round-shaped cerebellum on axial views, during the second or third trimester, especially when associated with ventriculomegaly. Partial RES is more common than previously thought, but presents an extreme diagnostic challenge, especially in cases with normal or nearly-normal cerebellar morphobiometric features. © 2021 International Society of Ultrasound in Obstetrics and Gynecology.


Assuntos
Anormalidades Múltiplas/diagnóstico por imagem , Vermis Cerebelar/anormalidades , Cerebelo/anormalidades , Anormalidades do Olho/diagnóstico por imagem , Doenças Renais Císticas/diagnóstico por imagem , Malformações do Sistema Nervoso/diagnóstico por imagem , Neuroimagem , Diagnóstico Pré-Natal/métodos , Retina/anormalidades , Rombencéfalo/anormalidades , Anormalidades Múltiplas/embriologia , Adulto , Vermis Cerebelar/diagnóstico por imagem , Vermis Cerebelar/embriologia , Cerebelo/diagnóstico por imagem , Cerebelo/embriologia , Anormalidades do Olho/embriologia , Feminino , Idade Gestacional , Humanos , Doenças Renais Císticas/embriologia , Imageamento por Ressonância Magnética , Imagem Multimodal , Malformações do Sistema Nervoso/embriologia , Gravidez , Retina/diagnóstico por imagem , Retina/embriologia , Estudos Retrospectivos , Rombencéfalo/diagnóstico por imagem , Rombencéfalo/embriologia , Índice de Gravidade de Doença , Ultrassonografia Pré-Natal
9.
Cell Rep ; 35(1): 108932, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33826902

RESUMO

Mutations in the gene encoding the chromatin remodeler chromodomain helicase DNA-binding protein 8 (CHD8) are a highly penetrant risk factor for autism spectrum disorder (ASD). Although cerebellar abnormalities have long been thought to be related to ASD pathogenesis, it has remained largely unknown whether dysfunction of CHD8 in the cerebellum contributes to ASD phenotypes. We here show that cerebellar granule neuron progenitor (GNP)-specific deletion of Chd8 in mice impairs the proliferation and differentiation of these cells as well as gives rise to cerebellar hypoplasia and a motor coordination defect, but not to ASD-like behavioral abnormalities. CHD8 is found to regulate the expression of neuronal genes in GNPs. It also binds preferentially to promoter regions and modulates local chromatin accessibility of transcriptionally active genes in these cells. Our results have thus uncovered a key role for CHD8 in cerebellar development, with important implications for understanding the contribution of this brain region to ASD pathogenesis.


Assuntos
Transtorno Autístico/patologia , Cerebelo/embriologia , Cerebelo/fisiopatologia , Proteínas de Ligação a DNA/metabolismo , Atividade Motora , Animais , Comportamento Animal , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Cerebelo/anormalidades , Cromatina/metabolismo , Proteínas de Ligação a DNA/deficiência , Deficiências do Desenvolvimento , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Camundongos Endogâmicos C57BL , Malformações do Sistema Nervoso , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Sinapses/metabolismo
10.
Elife ; 102021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33591268

RESUMO

The mature cerebellum controls motor skill precision and participates in other sophisticated brain functions that include learning, cognition, and speech. Different types of GABAergic and glutamatergic cerebellar neurons originate in temporal order from two progenitor niches, the ventricular zone and rhombic lip, which express the transcription factors Ptf1a and Atoh1, respectively. However, the molecular machinery required to specify the distinct neuronal types emanating from these progenitor zones is still unclear. Here, we uncover the transcription factor Olig3 as a major determinant in generating the earliest neuronal derivatives emanating from both progenitor zones in mice. In the rhombic lip, Olig3 regulates progenitor cell proliferation. In the ventricular zone, Olig3 safeguards Purkinje cell specification by curtailing the expression of Pax2, a transcription factor that suppresses the Purkinje cell differentiation program. Our work thus defines Olig3 as a key factor in early cerebellar development.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Cerebelo/embriologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular , Cerebelo/citologia , Cerebelo/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Camundongos Knockout , Neurogênese , Células de Purkinje/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
Reprod Toxicol ; 100: 109-119, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33497742

RESUMO

Primary cultures of cerebellar granule neurons (CGNs) derived from chicken embryos were used to explore the effects on developmental neurotoxicity by a complex defined mixture of persistent organic pollutants (POPs). Its chemical composition and concentrations were based on blood levels in the Norwegian/Scandinavian population. Perfluorooctane sulfonic acid (PFOS) alone, its most abundant compound was also evaluated. Different stages of CGNs maturation, between day in vitro (DIV) 1, 3, and 5 were exposed to the POP mixture, or PFOS alone. Their combination with glutamate, an excitatory endogenous neurotransmitter important in neurodevelopment, also known to cause excitotoxicity was evaluated. Outcomes with the mixture at 500x blood levels were compared to PFOS at its corresponding concentration of 20 µM. The POP mixture reduced tetrazolium salt (MTT) conversion at earlier stages of maturation, compared to PFOS alone. Glutamate-induced excitotoxicity was enhanced above the level of that induced by glutamate alone, especially in mature CGNs at DIV5. Glutathione (GSH) concentrations seemed to set the level of sensitivity for the toxic insults from exposures to the pollutants. The role of N-methyl-D-aspartate receptor (NMDA-R) mediated calcium influx in pollutant exposures was investigated using the non-competitive and competitive receptor antagonists MK-801 and CGP 39551. Observations indicate a calcium-independent, but still NMDA-R dependent mechanism in the absence of glutamate, and a calcium- and NMDA-R dependent one in the presence of glutamate. The outcomes for the POP mixture cannot be explained by PFOS alone, indicating that other chemicals in the mixture contribute its overall effect.


Assuntos
Ácidos Alcanossulfônicos/toxicidade , Cerebelo/embriologia , Fluorocarbonos/toxicidade , Ácido Glutâmico/farmacologia , Neurônios/efeitos dos fármacos , Neurotoxinas/toxicidade , Poluentes Orgânicos Persistentes/toxicidade , Ácidos Alcanossulfônicos/sangue , Animais , Cálcio/metabolismo , Cerebelo/efeitos dos fármacos , Embrião de Galinha , Galinhas , Fluorocarbonos/sangue , Glutationa/análise , Humanos , Neurônios/química , Neurônios/metabolismo , Poluentes Orgânicos Persistentes/sangue , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de Sinais/efeitos dos fármacos
12.
AJNR Am J Neuroradiol ; 42(1): 194-200, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33431505

RESUMO

BACKGROUND AND PURPOSE: Little is known about microstructural development of cerebellar white matter in vivo. This study aimed to investigate developmental changes of the cerebellar peduncles in second- and third-trimester healthy fetuses using motion-corrected DTI and tractography. MATERIALS AND METHODS: 3T data of 81 healthy fetuses were reviewed. Structural imaging consisted of multiplanar T2-single-shot sequences; DTI consisted of a series of 12-direction diffusion. A robust motion-tracked section-to-volume registration algorithm reconstructed images. ROI-based deterministic tractography was performed using anatomic landmarks described in postnatal tractography. Asymmetry was evaluated qualitatively with a perceived difference of >25% between sides. Linear regression evaluated gestational age as a predictor of tract volume, ADC, and fractional anisotropy. RESULTS: Twenty-four cases were excluded due to low-quality reconstructions. Fifty-eight fetuses with a median gestational age of 30.6 weeks (interquartile range, 7 weeks) were analyzed. The superior cerebellar peduncle was identified in 39 subjects (69%), and it was symmetric in 15 (38%). The middle cerebellar peduncle was identified in all subjects and appeared symmetric; in 13 subjects (22%), two distinct subcomponents were identified. The inferior cerebellar peduncle was not found in any subject. There was a significant increase in volume for the superior cerebellar peduncle and middle cerebellar peduncle (both, P < .05), an increase in fractional anisotropy (both, P < .001), and a decrease in ADC (both, P < .001) with gestational age. The middle cerebellar peduncle had higher volume (P < .001) and fractional anisotropy (P = .002) and lower ADC (P < .001) than the superior cerebellar peduncle after controlling for gestational age. CONCLUSIONS: A robust motion-tracked section-to-volume registration algorithm enabled deterministic tractography of the superior cerebellar peduncle and middle cerebellar peduncle in vivo and allowed characterization of developmental changes.


Assuntos
Algoritmos , Cerebelo/embriologia , Imagem de Tensor de Difusão/métodos , Processamento de Imagem Assistida por Computador/métodos , Neurogênese , Feminino , Feto , Humanos , Masculino , Neurogênese/fisiologia , Gravidez , Terceiro Trimestre da Gravidez , Estudos Retrospectivos
13.
Ultrasound Obstet Gynecol ; 57(4): 614-623, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32196791

RESUMO

OBJECTIVE: To construct international ultrasound-based standards for fetal cerebellar growth and Sylvian fissure maturation. METHODS: Healthy, well nourished pregnant women, enrolled at < 14 weeks' gestation in the Fetal Growth Longitudinal Study (FGLS) of INTERGROWTH-21st , an international multicenter, population-based project, underwent serial three-dimensional (3D) fetal ultrasound scans every 5 ± 1 weeks until delivery in study sites located in Brazil, India, Italy, Kenya and the UK. In the present analysis, only those fetuses that underwent developmental assessment at 2 years of age were included. We measured the transcerebellar diameter and assessed Sylvian fissure maturation using two-dimensional ultrasound images extracted from available 3D fetal head volumes. The appropriateness of pooling data from the five sites was assessed using variance component analysis and standardized site differences. For each Sylvian fissure maturation score (left or right side), mean gestational age and 95% CI were calculated. Transcerebellar diameter was modeled using fractional polynomial regression, and goodness of fit was assessed. RESULTS: Of those children in the original FGLS cohort who had developmental assessment at 2 years of age, 1130 also had an available 3D ultrasound fetal head volume. The sociodemographic characteristics and pregnancy/perinatal outcomes of the study sample confirmed the health and low-risk status of the population studied. In addition, the fetuses had low morbidity and adequate growth and development at 2 years of age. In total, 3016 and 2359 individual volumes were available for transcerebellar-diameter and Sylvian-fissure analysis, respectively. Variance component analysis and standardized site differences showed that the five study populations were sufficiently similar on the basis of predefined criteria for the data to be pooled to produce international standards. A second-degree fractional polynomial provided the best fit for modeling transcerebellar diameter; we then estimated gestational-age-specific 3rd , 50th and 97th smoothed centiles. Goodness-of-fit analysis comparing empirical centiles with smoothed centile curves showed good agreement. The Sylvian fissure increased in maturation with advancing gestation, with complete overlap of the mean gestational age and 95% CIs between the sexes for each development score. No differences in Sylvian fissure maturation between the right and left hemispheres were observed. CONCLUSION: We present, for the first time, international standards for fetal cerebellar growth and Sylvian fissure maturation throughout pregnancy based on a healthy fetal population that exhibited adequate growth and development at 2 years of age. © 2020 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.


Assuntos
Cerebelo/embriologia , Aqueduto do Mesencéfalo/embriologia , Desenvolvimento Fetal , Gráficos de Crescimento , Ultrassonografia Pré-Natal , Adulto , Brasil , Cerebelo/crescimento & desenvolvimento , Aqueduto do Mesencéfalo/crescimento & desenvolvimento , Pré-Escolar , Feminino , Idade Gestacional , Humanos , Índia , Lactente , Recém-Nascido , Itália , Quênia , Estudos Longitudinais , Masculino , Gravidez , Resultado da Gravidez , Padrões de Referência , Reino Unido
14.
Biochem Biophys Res Commun ; 534: 59-66, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33310189

RESUMO

Autism spectrum disorder (ASD) is a neurodevelopmental disorder caused by genetic and environmental factors. Among the environmental factors, maternal infection is known as one of the principal risk factors for ASD. On the other hand, postmortem studies suggested the relationship of oxidative stress with ASD etiology. However, the role of oxidative stress in the development of ASD remains unclear. Here, we report the involvement of NOX1/NADPH oxidase, an enzyme generating reactive oxygen species (ROS), in behavioral and anatomical abnormalities in a maternal immune activation (MIA) model. In the MIA model of gestational polyinosinic-polycytidylic acid (poly(I:C)) exposure, increased serum levels of IL-6 were observed in both wild-type (WT) and Nox1-deficient mice (Nox1KO). Following the comparable induction of MIA in the two genotypes, impairment of social preference and defects in motor coordination were observed in WT offspring but not in offspring deficient in Nox1. MIA up-regulated NOX1 mRNA in the cerebral cortex and cerebellum of the fetus but not in the adult offspring. Although the development of cortical neurons was unaffected by MIA in either genotype, the dropout of Purkinje cells in lobule VII of MIA-affected offspring was significantly ameliorated in Nox1KO. Taken together, these results suggested that NOX1/NADPH oxidase plays an essential role in some behavioral phenotypes observed in ASD, possibly by promoting the loss of Purkinje cells in the cerebellum.


Assuntos
Transtorno do Espectro Autista/etiologia , Comportamento Animal/fisiologia , NADPH Oxidase 1/genética , Células de Purkinje/patologia , Animais , Transtorno do Espectro Autista/imunologia , Cerebelo/embriologia , Córtex Cerebral/embriologia , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , NADPH Oxidase 1/metabolismo , Poli I-C/imunologia , Poli I-C/farmacologia , Gravidez
15.
Neurobiol Dis ; 150: 105236, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33383187

RESUMO

Development of the forebrain critically depends on the Sonic Hedgehog (Shh) signaling pathway, as illustrated in humans by the frequent perturbation of this pathway in holoprosencephaly, a condition defined as a defect in the formation of midline structures of the forebrain and face. The Shh pathway requires functional primary cilia, microtubule-based organelles present on virtually every cell and acting as cellular antennae to receive and transduce diverse chemical, mechanical or light signals. The dysfunction of cilia in humans leads to inherited diseases called ciliopathies, which often affect many organs and show diverse manifestations including forebrain malformations for the most severe forms. The purpose of this review is to provide the reader with a framework to understand the developmental origin of the forebrain defects observed in severe ciliopathies with respect to perturbations of the Shh pathway. We propose that many of these defects can be interpreted as an imbalance in the ratio of activator to repressor forms of the Gli transcription factors, which are effectors of the Shh pathway. We also discuss the complexity of ciliopathies and their relationships with forebrain disorders such as holoprosencephaly or malformations of cortical development, and emphasize the need for a closer examination of forebrain defects in ciliopathies, not only through the lens of animal models but also taking advantage of the increasing potential of the research on human tissues and organoids.


Assuntos
Encéfalo/anormalidades , Cílios/genética , Ciliopatias/embriologia , Anormalidades Craniofaciais/embriologia , Proteínas Hedgehog/fisiologia , Prosencéfalo/embriologia , Anormalidades Múltiplas/embriologia , Anormalidades Múltiplas/genética , Encéfalo/embriologia , Cerebelo/anormalidades , Cerebelo/embriologia , Transtornos da Motilidade Ciliar/embriologia , Transtornos da Motilidade Ciliar/genética , Ciliopatias/genética , Anormalidades Craniofaciais/genética , Deficiências do Desenvolvimento/genética , Encefalocele/embriologia , Encefalocele/genética , Anormalidades do Olho/embriologia , Anormalidades do Olho/genética , Regulação da Expressão Gênica no Desenvolvimento , Holoprosencefalia/embriologia , Holoprosencefalia/genética , Humanos , Doenças Renais Císticas/embriologia , Doenças Renais Císticas/genética , Doenças Renais Policísticas/embriologia , Doenças Renais Policísticas/genética , Retina/anormalidades , Retina/embriologia , Retinite Pigmentosa/embriologia , Retinite Pigmentosa/genética , Transdução de Sinais , Proteína GLI1 em Dedos de Zinco/genética , Proteína Gli2 com Dedos de Zinco/genética , Proteína Gli3 com Dedos de Zinco/genética
16.
J Comp Neurol ; 529(5): 1081-1096, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32785933

RESUMO

The current study was conducted to assess whether a single administration of 5-bromo-2'-deoxyuridine (BrdU) interferes with cell proliferation and leads to the activation of apoptotic cellular events in the prenatal cerebellum. BrdU effects across a wide range of doses (25-300 µg/g b.w.) were analyzed using immunohistochemical and ultrastructural procedures. The pregnant rats were injected with BrdU at embryonic day 13, and their fetuses were sacrificed from 5 to 35 hr after exposure. The quantification of several parameters such as the density of mitotic figures, and BrdU and proliferating cell nuclear antigen (PCNA)-reactive cells showed that, in comparison with the saline injected rats, the administration of BrdU impairs the proliferative behavior of neuroepithelial cells. The above-mentioned parameters were significantly reduced in rats injected with 100 µg/g b.w. of BrdU. The reduction was more evident using 200 µg/g b.w. The most severe effects were found with 300 µg/g b.w. of BrdU. The present findings also revealed that high doses of BrdU lead to the activation of apoptotic cellular events as evidenced by both terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay and immunohistochemistry for active caspase-3. In comparison with saline rats, many apoptotic cells were found in rats injected with 100 µg/g b.w. of BrdU. The number of dying cells increased with 200 µg/g b.w. The most important number of apoptotic cells were observed in animals injected with 300 µg/g b.w. of BrdU. Ultrastructural studies confirmed the presence of neuroblasts at different stages of apoptosis.


Assuntos
Apoptose/efeitos dos fármacos , Artefatos , Bromodesoxiuridina/toxicidade , Cerebelo/citologia , Feto/efeitos dos fármacos , Células-Tronco Neurais/efeitos dos fármacos , Células Neuroepiteliais/efeitos dos fármacos , Animais , Bromodesoxiuridina/farmacologia , Contagem de Células , Divisão Celular/efeitos dos fármacos , Cerebelo/efeitos dos fármacos , Cerebelo/embriologia , Feminino , Feto/citologia , Marcação In Situ das Extremidades Cortadas , Microscopia Eletrônica de Varredura , Gravidez , Ratos , Ratos Sprague-Dawley
17.
Cell Cycle ; 19(19): 2451-2459, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32835583

RESUMO

Cerebellar neurons are generated from the rhombic lip and the neuroepithelium. In this study, we analyze the histogenesis of the cerebellar neuroepithelium in terms of cellular kinetics. The experimental animals are the offspring of pregnant dams injected with 5-bromo-2'-deoxyuridine (BrdU) on embryonic day 13. We infer the fraction of S-phase cells by examining a range of survival times after a single BrdU-exposure and a cumulative BrdU-labeling sequence, which allow for the derivation of cell-cycle parameters and phase durations. The current results indicate that the dose of BrdU employed (35 mg/kg) provides saturation S-phase labeling from at least 1 h after marker delivery. The duration of G2, mitotic phase, and G1 are 1.2, 0.5, and 6.9 h, respectively. The duration for the S-phase, growth fraction, and the whole cycle are obtained on the basis of two proliferative models, steady-state and exponential growth. Both models provided similar results. In conclusion, our results indicate that the steady-state and the cumulative S-phase labeling paradigms can be adopted to analyze cell cycle parameters in the cerebellar neuroepithelium. Current results can help in understanding the regulatory mechanisms of cerebellar histogenesis and the cell biological mechanisms of the proliferative cycle of the neuroepithelium.


Assuntos
Divisão Celular , Cerebelo/embriologia , Imuno-Histoquímica , Mitose , Células Neuroepiteliais/fisiologia , Fase S , Animais , Bromodesoxiuridina/metabolismo , Feminino , Idade Gestacional , Cinética , Células Neuroepiteliais/metabolismo , Gravidez , Ratos Sprague-Dawley
18.
Dis Model Mech ; 13(9)2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32817053

RESUMO

Mouse models of Down syndrome (DS) have been invaluable tools for advancing knowledge of the underlying mechanisms of intellectual disability in people with DS. The Ts(1716)65Dn (Ts65Dn) mouse is one of the most commonly used models as it recapitulates many of the phenotypes seen in individuals with DS, including neuroanatomical changes and impaired learning and memory. In this study, we use rigorous metrics to evaluate multiple cohorts of Ts65Dn ranging from 2014 to the present, including a stock of animals recovered from embryos frozen within ten generations after the colony was first created in 2010. Through quantification of prenatal and postnatal brain development and several behavioral tasks, our results provide a comprehensive comparison of Ts65Dn across time and show a significant amount of variability both across cohorts as well as within cohorts. The inconsistent phenotypes in Ts65Dn mice highlight specific cautions and caveats for use of this model. We outline important steps for ensuring responsible use of Ts65Dn in future research.This article has an associated First Person interview with the first author of the paper.


Assuntos
Comportamento Animal , Encéfalo/patologia , Síndrome de Down/patologia , Animais , Encéfalo/embriologia , Contagem de Células , Cerebelo/embriologia , Cerebelo/patologia , Modelos Animais de Doenças , Embrião de Mamíferos/patologia , Desenvolvimento Embrionário , Feminino , Membro Posterior/fisiopatologia , Hipocampo/embriologia , Hipocampo/patologia , Longevidade , Masculino , Camundongos Transgênicos , Teste do Labirinto Aquático de Morris , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Tamanho do Órgão , Fenótipo , Reflexo
19.
Genome Res ; 30(5): 749-756, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32430339

RESUMO

Dimension-reduction methods, such as t-SNE or UMAP, are widely used when exploring high-dimensional data describing many entities, for example, RNA-seq data for many single cells. However, dimension reduction is commonly prone to introducing artifacts, and we hence need means to see where a dimension-reduced embedding is a faithful representation of the local neighborhood and where it is not. We present Sleepwalk, a simple but powerful tool that allows the user to interactively explore an embedding, using color to depict original or any other distances from all points to the cell under the mouse cursor. We show how this approach not only highlights distortions but also reveals otherwise hidden characteristics of the data, and how Sleepwalk's comparative modes help integrate multisample data and understand differences between embedding and preprocessing methods. Sleepwalk is a versatile and intuitive tool that unlocks the full power of dimension reduction and will be of value not only in single-cell RNA-seq but also in any other area with matrix-shaped big data.


Assuntos
RNA-Seq/métodos , Software , Animais , Cerebelo/embriologia , Cerebelo/metabolismo , Expressão Gênica , Camundongos , Análise de Célula Única
20.
Development ; 147(21)2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32376680

RESUMO

Sonic hedgehog (Shh) signaling is essential for proliferation of cerebellar granule neuron progenitors (CGNPs) and its mis-regulation is linked to various disorders, including the cerebellar cancer medulloblastoma (MB). We recently identified RNF220, a ubiquitin E3 ligase promoting K63-linked polyubiquitylation and nuclear exportation of Gli transcription factors, as an Shh/Gli regulator involved in ventral neural patterning. Here, we report that RNF220 is required for the proliferation of CGNPs and Daoy cells (an Shh-grouped MB cell line), working as a positive regulator of Shh signaling. Mechanistic investigation demonstrated that RNF220 promotes Shh target gene expression by targeting the PRC2 component EED, and alters levels of epigenetic modification marks on Shh target promoters. We provided evidence that RNF220+/-; Ptch1+/- mice showed lower spontaneous MB occurrence compared with Ptch1+/- mice. Furthermore, in human clinical MB samples, RNF220 expression correlated well with that of GAB1, an Shh-group MB marker. Our findings provide new insights into the epigenetic regulation of Shh signaling and identify RNF220 as a potential new diagnostic marker and therapeutic target for Shh-group MB.


Assuntos
Cerebelo/embriologia , Progressão da Doença , Epigênese Genética , Proteínas Hedgehog/genética , Meduloblastoma/genética , Meduloblastoma/patologia , Transdução de Sinais , Ubiquitina-Proteína Ligases/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células , Cerebelo/patologia , Grânulos Citoplasmáticos/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas Hedgehog/metabolismo , Humanos , Lisina/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células-Tronco Neurais/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Poliubiquitina/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Proteólise , Ubiquitina-Proteína Ligases/genética , Ubiquitinação , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...